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ABSTRACT

Let G be an arbitrary group with a subgroup A. The subdegrees of
(A, G) are the indices [A : AN A9] (where g € G). Equivalent definitions
of that concept are given in [IP] and [K]. If A is not normal in G and
all the subdegrees of (A, G) are finite, we attach to (A, G) the common
divisor graph I': its vertices are the non-unit subdegrees of (4,G), and
two different subdegrees are joined by an edge iff they are not coprime.
It is proved in [IP] that I has at most two connected components. As-
surmne that [ is disconnected. Let D denote the subdegree set of (A, G)
and let Dy be the set of all the subdegrees in the component of I’ con-
taining min(D — {1}). We proved (K, Theorem A} that if A is stable
in G (a property which holds when A or [G : A] is finite), then the set
H={g€eG|[A: AN AS] € D, U{1}} is a subgroup of G. In this case
we say that A < H < G is a disconnected system (briefly: a system).
In the current paper we deal with some fundamental types of systems.
A system A < H < G is irreducible if there does not exist 1 < N 4 G
such that AN < H and AN/N < H/N < (i/N is a system. Theorem A
gives restrictions on the finite nilpotent normal subgroups of G, when G
possesses an irreducible system. In particular, if G is finite then Fit(G) is
a g-group for a certain prime q. We deal also with general systems. Corol-
lary (4.2) gives information about the structure of a finite group G which
possesses a system. Theorem B says that for any system A < H < G,
NG (Ng(A)) = Ng(A). Theorem C and Corollary C’ generalize a result
of Praeger [P, Theorem 2].
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1. Introduction

In this paper we deal with groups G possessing a subgroup A, such that the index
set D = {[A: ANAY]| g € G} satisfies the following property: it consists of finite
numbers only, and there exist two disjoint and non-empty sets of primes, o and
7, such that D— {1} is a union of a non-empty set of c-numbers and a non-empty
set of T-numbers. Isaacs and Praeger [IP] proved that for any subgroup A, there
exist at most two disjoint sets of primes satisfying that condition.

We have shown in [K] that in this situation, provided that A is stable in G
(a property which holds when A or [G : A] is finite, and will be defined later
in this paper), the group G has a nice structure. The main result in [K] ([K],
Theorem A) is as follows: fix the notation for ¢ and 7 such that min(D—{1})isa
o-number. Then the set H = {g € G| [A: AN AY)] is a o-number} is a subgroup
of G if and only if A is stable in G {note that 1 is considered as a og-number).

In the current paper we obtain further information about groups G possessing
such a subgroup A, provided that A is stable in G. In that case we say that
A < H < G is a disconnected system (briefly: a system) of G. We say that
a system A < H < G is irreducible if there does not exist a system of the form
AN/N < H/N < G/N,wherel < NA4 G, AN < H.

It is easy to see that for any system A < H < G, A is not a finite nilpotent
group (see the remark in section 4). In section 3 we deal with irreducible systems.
One of our results is that if G is a finite group possessing an irreducible system,
then Fit{G) is a g-group for a certain prime ¢ (in this paper the notion “g-
group”s includes trivial groups; Fit(G) denotes the Fitting subgroup of G}. In
section 4 general systems are considered. We prove that if G is a finite group
possessing a system A < H < G, then G has a proper normal subgroup N, such
that Fit{(G/N) is a g-group for a certain prime ¢, and AN/N is not nilpotent.
Another result is that if A < H < G is a system then Ng(Ng(A)) = Ng(4).

For a given pair (A, G) (where A is a subgroup of G), we continue to use the
notation D = {[A: ANAY| g € G}. Anindex [A : AN AY] is called a subdegree
of (A, G), and so D is the subdegree set of (4, G). This concept was presented
by Isaacs and Praeger ([IP]). In their paper the permutation group point of view
is prominent: let G act transitively on a set X, and let A = G, be the stabilizer
of a point z € X. Then the subdegrees of (A, G) are exactly the cardinalities of
the A-orbits on X.

In the remaining part of this section, A is a non-normal subgroup of G (equiv-
alently: D # {1}), and we assume that all the subdegrees of (A, G) are finite.
The common divisor graph I" of (A, G) is the undirected graph with vertex
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set D {1}, in which two different vertices s,t € D — {1} are joined by an edge
iff ged(s,t) # 1 (ged(s,t) denotes the greatest common divisor of s and t). We
shall occasionally write ['(4,¢), to emphasize the pair to which I' corresponds.
Isaacs and Praeger proved ([IP], Theorem A) that I" has at most two connected

components.

Remark: According to the definition in [IP], the common divisor graph includes
also the trivial component of the vertex 1, and so, in terms of {IP], it has at most
three components. |

In this paper, whenever I' is disconnected, the vertex sets of the two compo-
nents are denoted by D; and D,. Furthermore, we always fix the notation such
that min(D — {1}) € D;.

We introduce now the important concepts of pairing and stability. The
pairing concept played a significant role in {IP]. The related concept of stability
was defined in [K]. Subdegrees s and ¢ (not necessarily different) are paired if
there exists g € G such that s = [A: ANA9,t=[A: AN A97']. Note that
[A: AN A9 ~'] = [A9 : A9 A]. Note further that a subdegree can be paired with
more then one subdegree, and that every subdegree is paired with something.
We say that A is stable in G if 1 is paired only with itself and every two paired
subdegrees different from 1 lie in the same connected component of I'. Let Ag be
the core of A in G. It is easy to see that if A/Aq is finite then every subdegree
is paired only with itself and so A is stable in G. In particular, if A or [G : 4] is
finite then A is stable in G. Furthermore, (2.7) and (4.1)(a) in [IP] imply that if
I' is disconnected and D; or D, is a finite set, then A is stable in G.

Isaacs and Praeger gave detailed information about the subdegree set D in the
disconnected and stable setting. Parallel information about the structure of the
group G was presented in [K]. The main result there was ([K], Theorem A):

(1.1) THEOREM: Assume that I' is disconnected and denote
H={geG|[A:An A% e D;U{1}}.

Then H is a subgroup of G iff A is stable in G. In any case, No(A) C H C G,
where both inclusions are proper.

Let M < G and let S C G be a non-empty union of right cosets Mu. Then
we denote S/M = {Mu| u € G, Mu C S}. Further we denote the cardinal-
ity of S/M by [S : M]. In particular [AgA : A] is the cardinality of the set
{Au] u € G, Au C AgA}. The equality [A : AN A9] = [AgA : A] is easily
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proved (see [K]|, section 1). Other useful eqnalities are as follows: let A and S
be as described above, and let g.h € G. Then [S¢: M9 =[S : M]|. [Sh: M] =
[S: M|, [g7'Sh: M9] =[S : M]. For a subgroup A < G, we denote by A/ ~G
the set of all the right cosets M g (g € G). The standard action of G on Af ~ G
is the transitive action defined by (Mg)* = AMgu (for u € GG). The core of M in
G is denoted by Mc. The normal closure of M in G is denoted by AfC.

Theorem (1.1) motivates the following definitions. Let G be a group with a
subgroup A and a subsct H such that A C H C G. Wesay that AC H C G
is a disconnected semi-system (briefly: a semi-system) if A is not nor-
mal in G, all the subdegrees of (A.G) are finite, ['( 4 ¢ is disconnected and
H={geG|{A: An A% € D, U {1}}. Furthermore, if in addition A is stable
in G then. by {1.1}, H is a subgroup of G, and we say that A < H < G is a
disconnected system (briefly: a system). Notice that by (1.1) a semi-system
A C H C G is asystem if and only if H is a subgroup of G.

A system A < H < G is reducible if there exists N such that 1 < N 4 G,
AN < H and AN/N < H/N < G/N is a system. If such N fails to exist, we say
that the system is irreducible. Notice that if A < H < G is irreducible. then
the core A; must be trivial.

Let a group G satisfy the maximal condition on normal subgroups (i.e., G
does not have an infinite properly ascending chain of normal subgroups), and let
A < H < G be a system. By the definitions, it follows ecasily that there exists N
such that N 9 G, AN < H and AN/N < H/N < G/N is an irreducible system.
Thus the concept of irreducible systems is fundamental in the research of systems
in general.

In section 3 we prove the following criterion for irreducibility.

(3.3) PROPOSITION: Let a group G possess a system A < H < G. Let L = AY,
the normal closure of A in H. Then A < H < G is irreducible iff AN > L for
each N such that 1l < N4 G.

For a natural number n we denote by n(n) the set of all the prime divisors of n.
For a finite subgroup M < G we write (M) = w(|M|). For a finite G and a set of
primes o, O, (G) denotes the maximal normal o-subgroup of G. Let A< H < G
be a system and let L = A¥. Then [L : A] is finite and [L : A] # 1 by Theorem
B of [K]. By using Proposition (3.3), we obtain in section 3 the following result
about groups possessing an irreducible system.

THEOREM A: Let a group G possess an irreducible system A < H < G. Let
L = AY. Suppose that N is a nontrivial finite normal subgroup of G. Then
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(i) n([L: A]) C#{N), and in particular
(ii) if N is nilpotent then [L : A] is a power of a prime ¢, and N is a g-group.

Theorem A immediately implies

COROLLARY A’: Let a finite group G possess an irreducible system A < H < G.
Let L = A®. Then

(1) For each prime q dividing [L : A}, Oy (G) = 1.

(i) IfFit(G) # 1, then [L : A} is a power of a prime q and Fit(G) is a g-group.

CoRrOLLARY A”: Let a finite solvable group G possess an irreducible system
A< H<G. Let L = A", Then [L : A] is a power of a prime q, |[H : Ng(4)]
divides [L : A, and Fit(G) is a g-group.

Proof: Since G is solvable, Fit(G) # 1. In view of Corollary A’, it is left to show
only that [H : Ng(A)] divides [L : A]. Since H = LNg(A) by Lemma (2.3) in
[K], we have [H : Ng(A)] = [L : L N Ng(A)]. The result follows. |

In section 4 general systems are considered. One of the results is

THEOREM B: Let a group G possess a system A < H < G. Then Ng(Ng(4)) =
IVG(A).

In section 5 we deal mainly with systems A < H < G satisfying [L : A] = g,
a prime. This subfamily (alongside the subfamily of irreducible systems) seems
as a good starting point for the research of systems in general. Our results,

Theorem C and Corollary C' below, generalize the following result of Praeger
([P], Theorem 2).

THE {1,p, ¢}-THEOREM: Assume that D = {1,p,q}, where p and g are primes,
p < q. Then p divides ¢ — 1, and A is contained in a normal subgroup N of G,
such that [N : A] = q and N/Ay is Frobenius of order pq.

Notice that under the conditions of the {1, p, ¢}-Theorem, the sets D; = {p}
and D, = {q} are finite, and so A must be stable in G. Thusasystem A < H <G
occurs. Let L = A¥ then [L : A] divides gcd(D,) by Theorem B{(ii) in [K]
(where gcd(D2) is the greatest common divisor of all the numbers in D). Hence
[L : A] = q. In fact, we shall show (see the remark in section 5) that the normal
subgroup N mentioned in the {1, p, ¢}-Theorem is equal to L. Hence the following
results are indeed generalizations of the {1, p, ¢}-Theorem.
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THEOREM C: Let a group G possess a system A < H < G. Let L = A¥ and
suppose that [L : A] = g, a prime. Then one of the following cases holds:
(a) L/A; is Frobenius with a kernel of order q and a complement A/A;, of
order, say, r. In this case D, = {r}.
(b) L/Ay is isomorphic to a nonsolvable 2-transitive permutation group of
degree q. In this case g — 1 € D;.
Furthermore, in both cases ((a) and (b)) if A is finite then Ap contains all the
Sylow g-subgroups of A, which are nontrivial.

Remark: Notice again that [L : A] divides ged(D2) by Theorem B(ii) in [K].
Thus the assumption [L : A] = ¢ of Theorem C holds in particular if ged(D3) = g,
a prime.

The case when Dy = {g} is of particular interest. In this case A must be stable
in G (since Ds is finite), and a system A < H < G occurs. We have:

COROLLARY C': Assume that T' is disconnected and D, = {q}, where ¢ is a
prime. Let A < H < G be the corresponding system, and let L = A”. Then
[L : A] = ¢, and so one of the cases (a) and (b) of Theorem C holds. Moreover,
L = A%, the normal closure of A in G.

AcCKNOWLEDGEMENT: The author is grateful to the referee for his constructive
remarks.

2. Notation
Throughout this paper, whenever A < H < G is a system, we set the following
notation:

A is a stable subgroup of G;

I' (or T'4,g)) is the common divisor graph of (4, G);

D is the subdegree set of (4, G);

D, is the set of all the subdegrees in the connected component of I' containing
min(D — {1});

D, is the set of all the subdegrees in the other component of I';

H={geG|[A: AN A% e D, U{l1}};

L = AH | the normal closure of A in H.
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3. Irreducible systems

We begin with the following two lemmas, which absorb the main part of the proof
of Theorem A.

(3.1) LEMMA: Let A < G, N 4 G, g € G, and suppose that [A : AN A9] is
finite. Then [AN : AN N (AN)9] is finite, and it divides [A : AN A9].

Proof: We have [AN : AN N (AN)?] = [ANgAN : AN] = [ANgA : AN] =
[(AN)9A: (AN)?9] =[A: AN(AN)9). Since [A: AN(AN)9] divides [A: AN A9],
the proof is concluded. |

(3.2) LEMMA: Let a group G possess a system A < H < G, and let N 4 G,
AN # L. Then AN < H and AN/N < H/N < G/N is a system.

Proof: Since AN # L, Theorem B(iii) of [K] implies AN < H. For each
element g € G and subgroup M < G denote g* = gN, an element of G/N, and
M* = MN/N, a subgroup of G/N. We must prove that A* < H* < G* is
a system. For g € G we have [A* : A* N (A4*)9] = [AN : AN N (AN)9], and
this last index divides [A : AN A9] by (3.1). Now let w € H, v € G — H, then
[A* : A*N(A*)*"] divides [A : ANA*] and [A* : A*N(A*)Y"] divides [A : ANAY].
Thus [4* : A* N (A*)*] and [A* : A* N (A*)?"] are coprime.

Let us check which elements g € G satisfy [A* : A*N(A4*)9"] = 1. For such g it
holds that AN < (AN)?. Hence (AN)?"' < AN, i.e. A9 N < AN, and so both
A and A9 are contained in AN. If g € G~ H then AA9 = LL9 D L by
Theorem B(i) in [K], whence AN > L, a contradiction. Thus [A* : A*N(A4*)9'] =
limplies g € H and g* € H*. Now if each g* € H* satisfies [A* : A*N(A*)9"] =1,
then A* <4 H*, whence AN < H. Thus AN > A = [, a contradiction. It follows
that {g* € G*| [A* : A*N (A*)9"] = 1} C H* (a proper inclusion).

From what we have shown till now we deduce that I'*, the common divisor
graph of (A*,G*), is disconnected. By Theorem A of [IP] I'™* has exactly two
components. The vertex sets of these components must be

S={A: A NnA]| v € H*} - {1} and
T = {[A* : A* N (4")""]| v* € G* — H*}.

For completing the proof that A* < H* < G* is a system, it suffices to show that
the minimal non-unit subdegree of (A*, G*) is contained in S. We prove first that
A* is stable in G*. Notice that 1 is paired only with itself, since I'* is disconnected
(see [IP], (2.7)). Furthermore, let g* € G*, then [A* : A* N (4*)9] € T iff
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g* € G* — H* iff (¢*)~! € G* — H* iff [A* : AN (A*)¢)7'] € T. Thus A* is
indeed stable in G*.

Suppose now that the minimal non-unit subdegree is contained in 7. Then the
set {g* € G*| [A* : A* N (A*)9"] € TU{1}} is a proper subgroup of G*, by the
“if” part of (1.1). Denote this subgroup by K*, then we have G* = H* U K*,
which implies H* = G* and H = G, a contradiction. Thus the minimal non-unit
subdegree is contained in S, and so the proof of the lemmma is concluded. |

Lemma (3.2) enables us to obtain the following simple criterion for
irreducibility.

(3.3) PROPOSITION: Let a group G possess a system A < H < G.
Then A < H < G is irreducible if AN > L for each N such that 1 < N < G.

Proof: Suppose first that there exists N such that 1 < N 4 G and AN # L.
Then AN/N < H/N < G/N is a system by (3.2), whence A < H < G is
reducible. Next, suppose that A < H < G is reducible. Thus there exists N
such that 1 < N <4 G, AN < H, and AN/N < H/N < G/N is a system. The
proof will be concluded by showing that AN »? L. Indeed, if AN > L then
AN = LN and so AN <4 H. Thus AN/N < H/N. This is a contradiction, since
Ng/n(AN/N) < H/N by Theorem (1.1). |

Proposition (3.3) plays a central role in

Proof of Theorem A: (i) Since the system A < H < G is irreducible, (3.3) implies
AN > L. Thus [L : A] divides [AN : A}, and so [L : A] divides [N : N n A].
Hence w([L : A]) C n(N).

(ii) This follows immediately by (i), since if N is nilpotent then each of its
Sylow subgroups is normal in G. |

In the remaining part of this section we consider some examples for groups
possessing an irreducible system.

(3.4) Example: It is easily verified that the “elementary abelian by Frobenius
family” ([K], section 6) consists of finite solvable groups G possessing an ir-
reducible system A < H < G, such that [L : A] = [H : A] = q, a prime. By
Corollary A” Fit(G) must be a g-group. In fact, here Fit(G) is a Sylow g-subgroup
of G.

(3.5) Example: We present irreducible systems in which [L : A] = ¢, a prime,
but Fit(G) = 1. Let q be a prime, ¢ > 5, let K = S, (the symmetric group on
{1,2,...,q}) and let M = {g € K] g fixes the point q}. Evidently [K : M] = gq,
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and since K is 2-transitive, the subdegree set of (M, K) is {1,q — 1}. Choose
a finite nontrivial ¢’-group R. We describe a subfamily of the “wreath product
family” ([K], section 3). Consider the group G, which is the wreath product of
K by R with respect to the action of R on itself by right multiplication (i.e.,
the standard action of R on the cosets of the trivial subgroup): G = Kwr R =
(K x K x---x K)R. Each of the | R} copies of K is related to one of the elements
of R, and we agree that the first copy is related to the element 1 (this last
convention is just to secure consistency with the notation of section 3 in [K]).
Let A=M x K x---x K <G (|R| - 1 copies of K); then the subdegree set of
(A,G)is {1,g—1}U{q} = {1,¢—1,q}, and so T4 ¢, is disconnected (for details
see [K], section 3). We have H = K x --- x K (|R| copies of K).
Suppose that there exists N such that 1 < N 4 G and AN < H. Denote

J = {g € K] there exists in N an element of the form (g,...)}. Since N 4 G
we have J 4 K and so J =1 or J = K or J = Ky, the alternating group on
{1,2,...,q}. fJ = KorJ = Kgthen MJ = K andso AN = I, a contradiction.
Thus J = 1. Since the action of R is transitive, the normality of N in G implies
N =1, a contradiction. Hence such N does not exist and the system A < H < G
is irreducible. Notice also that L = H, whence [L : A] = [K : M] = q. However,
here Fit{(G) = 1. Indeed, By Corollary A'(ii}, Fit(G) must be a ¢-group. Since we
chose R to be a ¢’-group, it is easy to verify that O4(G) = 1. Thus Fit(G) = 1.

(3.6) Example: We present irreducible systems in which [L : A] is not a power of
a prime. Let K be any finite non-abelian simple group and let K, be a nontrivial
Sylow p-subgroup of K. Choose a finite nontrivial group R and define G = KwrR
in a way similar to Example (3.5). Let A = K, x K x --- x K < G {|R| - 1
copies of K), then I'(4 ) is disconnected (for details see [K], section 3). We
have H = K x --- x K (|R| copies). Similarly to Example (3.5), we obtain (by
the simplicity of K and the transitivity of R) that the system A < H < G is
irreducible. Furthermore L = H, and so [L : A] = [K : K,]. Now since K is
nonsolvable, it follows by a theorem of Burnside that [K] is divisible by at least
three primes. Thus [L : A] is not a power of a prime. By Corollary A’(ii) we
have Fit(G) = 1.

4. General systems

We begin this section with the following

Remark: For any system A < H < G, A is not a finite nilpotent group. Indeed,
suppose on the contrary that A is finite and nilpotent. Let p and ¢ be primes such
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that p divides a certain number in D and ¢ divides a certain number in Dy. Then
for each g € G, pq does not divide [A : AN A9]. Let A, and A, be the respective
Sylow subgroups of A. Then for each g € G either A9 > A, or A9 > A, holds.
This implies either g € Ng(Ap) or g € Ng(4,), and so G = Ng(A4,) U Ng(A4,).
Thus either G = Ng(4,) or G = Ng(A,), which contradicts our assumption that
both p and ¢ divide some subdegrees. 1

We have already mentioned that if G satisfies the maximal condition on normal
subgroups and A < H < G is a system, then there exists N such that AN/N <
H/N < G/N is an irreducible system. The following proposition describes how
to find such N.

(4.1) PROPOSITION: Let a group G possess a system A < H < G. Suppose that
N is a subgroup of G, which is maximal such that (i) N <« G and (ii) AN 2 L
(if G satisfies the maximal condition on normal subgroups then such N certainly
exists). Then AN < H and AN/N < H/N < G/N is an irreducible system.

Proof: Like in the proof of (3.2), we use the notation g* = gN, M* = MN/N.
We must prove that A* < H* < G* is an irreducible system. Notice first that
AN < H and A* < H* < G* is a system, by (3.2). Furthermore, L* = (A*)H"
which shows that L* is in fact the “new L” of the system A* < H* < G*. In view
of (3.3), it suffices to show that A*K* > L* for each K* such that 1 < K* 4 G*.
Indeed, let K> satisfy 1 < K* < G* and let K be the inverse image of K*. We
have N < K < G, whence by our assumption AK > L. This implies A*K* > L*,
as required. |

As a direct result of Proposition (4.1) we obtain the following result on finite
groups possessing a system.

(4.2) COROLLARY: Let a finite group G possess a system A < H < G. Then G
has a proper normal subgroup N, such that AN/N is not nilpotent and Fit(G/N)
is a (possibly trivial) g-group for a certain prime q dividing [L : A].

Proof: Choose N as described in (4.1). By (4.1) AN/N < H/N < G/N is an
irreducible system. According to the preceding remark, AN/N is not nilpotent.
By Corollary A’(ii), Fit{G/N) is a g-group for a certain prime ¢q. Furthermore,
suppose Fit(G/N) # 1. In the proof of (4.1) we have shown that LN/N is the
“new L” of the system AN/N < H/N < G/N. 1t follows by Corollary A’(ii)
that [LN/N : AN/N] is a power of g. Hence ¢ divides [L : A]. |

Our next goal is to prove Theorem B. In the following we always assume that
A is a non-normal subgroup of G such that all the subdegrees of (A, G) are finite.
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In Lemmas (4.3) and (4.4) below we do not assume that the group G possesses a
system. We say that a pair (A4, G) is of type (*) if [A® : A] is finite and coprime
to every subdegree of (A, G).

For example, let A < H < G be a system and consider the pair (A, H). Since
the subdegree set of (A, H) is Dy and [L : A] divides gcd(D3) (see Theorem B(ii)
in [K]), it holds that (A, H) is of type (*).

The following simple lemma is useful.

(4.3) LEMMA: Assume that (A, G) is of type (*). Then for each g € G— Ng(A),
AAY is not a subgroup of G.

Proof: Let g € G and suppose that AA9 is a subgroup of G. Thus AA49 < AC,
and so [AA9 : A] divides [AC : A]. Now [AA9: A] = [Ag71A: A] =[A: ANAS],
a subdegree of (4,G). Since (A4,G) is of type (*) we obtain [AA4Y : 4] = 1.
Consequently, A9 < A.

Now we have A < A9 ", so AA9 " is a subgroup of G. Applying the argument
of the previous paragraph to AAY ", we get A9 < A. Thus A9 = A, which
implies g € Ng(A). ]

As a corollary of Lemma (4.3) we obtain:

(4.4) LEMMA: Assume that (A, G) is of type (*).
(i) Let M satisfy M > A and M N A® < Ng(A). Then M < Ng(A).
(ii) The normal closure A® is not contained in Ng(A).

(i) No(Ng(A)) = Ne(A).

Proof: (i) Let g € M, then A9 < M 1 A® < Ng(A), and so AAY is a subgroup
of G. Thus g € Ng(A) by (4.3).

(ii) Suppose on the contrary that A® < Ng(A4). Thus GNAS = A < Ng(A),
whence by (i) we have G < Ng(A). This contradicts our assumption that A is a
non-normal subgroup of G.

(iii) Let g € Ng(Ng(A)), then A9 < Ng(A), and so AA9 is a subgroup of G.
Thus g € Ng(A4) by (4.3). |

The following proposition about systems will be helpful in proving Theorem B.

(4.5) PROPOSITION: Let a group G possess a system A < H < G. Then
(i) A is not normal in L.
(i) If M is a subgroup of G such that M > A and M N L < Ng(A), then
M < Ng(4).

Proof: (i) Apply (4.4)(ii) to the pair (A, H).
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(ii) Suppose that M > A and M N L < Ng(A). From M > A it follows that
either M > L or M < H (see Theorem B(iii) of [K]). If M > L then L < Ng(4),
contradicting (i). Hence M < H, and the proof is concluded by applying (4.4)(i)
to the pair (A, H). Notice that Ng(A) = Ny(A) by Theorem (1.1). |

We are ready now for

Proof of Theorem B: Notice again that Ng(A4) = Ny (A) by Theorem (1.1). By
applying (4.4)(iii) to the pair (A, H), we obtain Ny(Ng(A4)) = Ng(A). Thus
Ng(Ng(A)) N L < Ng(A). Now from (4.5)(ii) it follows that Ng(Ng(A)) =
Ng(A). 1

Let A < H < G be a system. We remark that A (unlike Ng(A)} does not
have to be a self-normalizer. In fact, let Gy be a direct product of G and a
nontrivial group M. Then it is easily verified that A < HM < Gy is a system
and Ng,(A) = Ng(A)M > A.

We conclude this section by the following proposition on systems, which
describes an interesting property of the intersections H N AA? (where g € G).

(4.6) PrROPOSITION: Let a group G possess a system A < H < G. Then
(i) For every u € H — Ng(A}, AAY is not a subgroup of H.
(ii) For everyv € G—H, HNAA" is a subgroup of H. Moreover HNAA" > L.

Proof: (i) Just apply (4.3) to the pair (A, H).

(i) Consider the action of H on the set {AgA| AgA C G — H}, given by
(AgA)* = AgAu = AguA (see Theorem B(iv) of [K]). For a fixed v € G~ H,
what is the stabilizer K of AvA with respect to this action? Let u € H, then
u € K iff AvuA = AvA iff vu € AvA iff w € AA. Thus K = HNAA =
(HNAY)A = A(HN A¥) = HN AAY. Moreover, AA” = LL" (by Theorem B(i)
of [K]), and so H N AAY > L.

5. Generalizations of the {1,p,¢}-Theorem
The following claims are needed for the proofs of Theorem C and Corollary C’'.

(5.1) LEMMA: Assume that (A,G) is of type (*) and denote K = A®. Suppose
further that [K : A} = g, a prime. Then Ax = Ag.

Proof: Suppose on the contrary that Ax # Ag, then there exists g € G—Ng(A4)
such that Ax £ A9. Thus 1 # [Ag : Ak NA9] = [A9Ak : A9) = [A(AK)9 " : A].
Now since K 4 G and Ax < K we have (AK)-"_1 < K. Consequently A(AK)-‘?_1
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is a subgroup of K. Hence [A(AK)Q_1 : A] divides [K : A] = ¢, which implies
[A(Ag)9 " : A] = g and A(Ak)? " = K. It follows that A49" = K, which
contradicts (4.3). |

(5.2) LEMMA: Let a group G possess a system A < H < G.
(i) Letv€ G—H. Then LY < L if AA" = L iff [Av™'A: A|=[L: A).
(ii) Ng(L)=HU{ve G-H |[AvA: A] =[Av 'A: A]=[L: A)}. Note that
the second component in this union may be empty.

(i) L< G iff Dy ={[L: A]}.

Proof: (i) We have AA” = LL" (see Theorem B(i) in [K]), whence LV < L iff
AAY = L. Moreover, since AAY = LL", the set AA” contains L. Thus AA* =L
iff [AAV : A] = [L: A]. But [AA" : A] = [Av™'A : A], which concludes the proof
of (i).

(ii) Let g € G; then g € Ng(L) iff L9 < L and L9 < L. Nowfixve G- H.
It follows by (i) that v € Ng(L) iff [AvA : A] = [Av™'A: A] = [L : A]. Since
H < Ng(L), the result follows.

(iii) This follows from (ii). Recall that [AgA : A] = [A : AN A9] for each g € G.
|

Theorem C and Corollary C' can be proved now.

Proof of Theorem C: By applying (5.1) to the pair (A, H) we obtain A, = Ap,
whence the quotient H/Ap is defined. For each element u € H and subgroup
M < H denote u* = uAr, an element of H/Ar, and M* = M A, /AL, asubgroup
of H/Arp. We have A* # 1 (by Proposition (4.5)(i)) and [L* : A*] = q.

When considering the standard action of L on A L, we see that L* is iso-
morphic to a transitive nonregular permutation group of degree q. Suppose first
that L* is solvable; then by (11.6) in [W] L* is Frobenius with a complement
A*. Let r = |A*|. We have L* < H*  and all the Hall ¢'-subgroups of L*
(i.e., the complements of L*) are conjugate in L*. Hence we may apply Frat-
tini’s argument to get H* = Ny.(A*)L*. Let s € Dy; then there exists u € H
such that s = [A : AN A"|, and there exist n* € Ny.(A*), I* € L* such that
wr=n**. Thuss=[A: ANAY ] =[4* : A N (A ] = [A*: A" n(A) V] =
[4* : A* N (A*)]. Since A* is a Frobenius complement in L*, we have either
(A" = A* or A* N (A*)" = 1. But s # 1, whence A* N (4*)" = 1 and so
s = |A*| = r. It follows that Dy = {r}, and case (a) is obtained.

Suppose now that L* is nonsolvable; then by (11.7) in [W] L acts 2-transitively
on AN L, and so L* is isomorphic to a 2-transitive permutation group of degree
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q. Thus for each v € L — A we have a disjoint union L = AU AuA, whence
g-1=[L:A]—-1=[AuA: A] € D;. This provides case (b).

Finally notice that in both cases [A : A] divides (¢ — 1)!, since (L : A] = q.
Consequently, if A is finite then Ay contains all the Sylow ¢-subgroups of A.
Notice that the Sylow g-subgroups of A are nontrivial, since ¢ divides ged{D»)
by Theorem B(ii) of [K]. |

Proof of Corollary C': By Theorem B(ii) of [K] [L : 4] = ¢, whence Theorem
C applies. Moreover L < G by (5.2)(iii), and since L = A¥ < A%, we obtain
L = AS.

Remark: Let N be the normal subgroup mentioned in the {1,p, ¢}-Theorem.
By Corollary C’ we have L = A® < N and [L : A] = ¢ = [N : A]. Thus the
equality N = L is obtained.

In Example (3.4) we presented finite solvable groups G possessing a system
A < H < G such that [L : A] = q, a prime. This provides an example for case
(a) of Theorem C. Also the assumption Dy = {q} of Corollary C’ holds there.

Consider now Example (3.56). Here L = H = K x --- x K (|R| copies of
K =8;), [L: A =gq,aprime, and A =1x K x--- x K (JR| — 1 copies
of K). Thus L/Ay is isomorphic to K = S, which is nonsolvable (recall that
q > 5), and so case (b) of Theorem C holds. Notice that D = {1,9 —1,¢}, so
D, = {q -1} and D; = {q}.

An example for case (b) of Theorem C in which D, is not a singleton is given
in (P] (see [P], Example (2.2)(b}). In that example D; = {3,4,6} and D, = {7}.
Notice further that it follows that the solvability assumption in Theorem D of
[K] cannot be omitted.

In the following theorem we add to the setting of Theorem C the assumption

that g is a self-paired subdegree of (A, G). Notice that the examples just described
satisfy this condition.

THEOREM D: Let a group G possess a system A < H < G. Suppose that there
exists v € G — H such that [A: AN A" = [A: ANA" '] = q, a prime. Then
[L : A] = ¢, and so one of the cases (a) and (b) of Theorem C holds. In addition,
(i) AN(AL)’ < A, and A/AN(AL)" is isomorphic to L/ArL.
(i) Denote R = A/JAN(AL)", W = (AN A?)/(AN(AL)Y). Then in case (a)
W is a complement of the Frobenius group R, and in case (b) the standard
action of R on W \ R is 2-transitive and faithful.

Proof: Notice first that ged(D2) = ¢, whence the condition [L : A] = g of
Theorem C is satisfied. Thus one of the cases (a) and (b) of Theorem C holds.
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Now we claim that the indices [4 : ANAY" '] and [A : Az] are coprime. Indeed,
[A: AN AY"') = g, while [4 : A] divides (g — 1)!, since [L : 4] = q. It follows
that A= A (AN A”""). Furthermore, since

[AvA: A|=[A: ANA"]=[L: 4],

Lemma (5.2)(i) implies L = AA”"". Consequently
L=AA"" = AL (ANA" A" = A A" .
We have
L/Ap = A Ap/AL,

and A°" Ap /AL is isomorphic to AV /A"_1 N Ar. This last quotient is clearly
isomorphic to A/AN (AL)?, and so we have part (i).

For proving (ii), let ¢ denote the natural isomorphism from L/AL to
A JAYT" 0 Ay (recall that L/A, = AY Ap/Ap), and let ¢ denote the ob-
vious isomorphism from A*” JA*" N Ay to A/AN(AL)". We have (L/AL)?Y =
A/AN (AL)Y = R. Furthermore, A = Ap(AN A”_l), and so (A/AL)? =
(ANA*)AL/AL)® = (AN AY ) /(A* " N AL). Thus

(A/AL® = (ANA%) /(AN (AL)) = W.

This implies part (1i), since one of the cases (a) and (b) of Theorem C holds (in
the proof of Theorem C we have noted that in case (b) L acts 2-transitively on
ANL). |

Let A and K be groups such that A acts on K via automorphisms, and set
G = AK, the respective semidirect product. It is easily checked (see [K], the first
paragraph of section 4) that the subdegrees of (A, G) are exactly the cardinalities
of the A-orbits on K. More precisely, for each k € K we have [A : AN AF] = |k4,
where k4 denotes the A-orbit of k. Suppose that the action of A is nontrivial and
that all the A-orbits are finite. In this case the common divisor graph I of (4, G)
is defined: its vertices are the sizes of the nonsingleton A-orbits, and two different
vertices are joined by an edge iff the respective orbit sizes are not coprime. It
turns out that in this case every subdegree is paired only with itself, so if " is
disconnected then a system A < H < G occurs. Indeed, let g € G, g = ak,
wherea € A, k€ K. Then [A: ANA9 | = [A: ANAF e | = [A: AnA '] =
k)4 = {ET) a € A} = [{(k*) " |a€ A} = k4 = [A: AN A% =
[A: AN A% =[A: AN A9).

We shall call I' the common divisor graph related to the action of A on K.
Our remark and Theorem D imply
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THEOREM E: Let a group A act nontrivially on a group K via automorphisms,
and suppose that all the A-orbits are finite. Assume that the common divisor
graph T' related to this action is disconnected, and there exists a prime ¢ such
that g € Do. Then A has a normal subgroup N such that one of the following
cases holds:
(a) A/N is Frobenius with a kernel of order q and a complement of order, say,
r. In this case Dy = {r}.
(b) A/N is isomorphic to a nonsolvable 2-transitive permutation group of
degree q. In this case ¢ — 1 € Dy.

We do not know whether there exists a system A < H < G such that G is a
simple group. However, the following proposition asserts that if such a system
exists, then Dy must be a relatively “rich” set.

(5.3) PROPOSITION: Assume that T' is disconnected and D, C {q,q*}, where
q is a prime (since D is finite, A must be stable in G under these conditions,
whence we have a system A < H < G). Then G is not simple.

Proof: If D; = {q} then L < G by Corollary C'. Suppose then that q® € D,.
By Theorem Bf(ii) of [K], either [L : A] = ¢® or [L : A] = qholds. If [L : 4] = ¢*
then (by the same theorem) Dy = {¢?}. Hence (5.2)(iii) implies L < G and G is
not simple. Let [L : A] = g; then (see Theorem C in [K]) the subdegree set of
(L,G) is {1,q}. Thus Theorem 2 in [BL] implies the existence of a subgroup N,
N 4 G, such that either (a) L N and [N : L] =¢, or (b) Nd L and L/N is
isomorphic to a transitive permutation group of degree q.

Suppose that (a) holds. Since [L : A] = g and ¢* € Dy, it follows by (5.2)(iii)
that L is not normal in G. Hence N is a proper normal subgroup of G. Suppose
now that (b) holds; then [L : N| divides q!, whence ¢* does not divide [L : N].
But since g2 € D2, we have [A : AN A"} = ¢? for some v € G — H. It follows
that N is nontrivial, which concludes the proof. |
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