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ABSTRACT 

Let G be an arbi trary group with a subgroup A. The s u b d e g r e e s  of 

(A, G) are the indices [A : A f3 A g] (where g E G). Equivalent definitions 

of that  concept  are given in [IP] and [K]. If A is not normal in G and 

all the subdegrees of (A,G) are finite, we at tach to (A,G) the c o m m o n  

d i v i s o r  g r a p h  F: its vertices are the non-unit  subdegrees of (A, G), and 

two different subdegrees are joined by an c~lge iff they are not coprime. 

It is proved in [IP] that  F has at most two connected components .  As- 

sume that  F is disconnected. Let D denote the subdegree set of (A,G) 

and let D1 be the set of all the subdegrees in the component  of F con- 

taining min(D - {1}). We proved [K, Theorem A] tha t  if A is stable 

m G (a property which holds when A or [G : A] is finite), then the set 

H = {g E G] [A : A VIA 9] E D1 tJ {1}} is a subgroup of G. In this case 

we say tha t  A < H < G is a d i s c o n n e c t e d  s y s t e m  (briefly: a s y s t e m ) .  

In the current  paper  we deal with some fundamental  types of systems. 

A system A < H < G is i r r e d u c i b l e  if there does not exist I < N <l G 
such tha t  AN < H and AN/N < H/N < (:/N is a system. Theorem A 

gives restrictions on the finite ni lpotent  normal subgroups of G, when G 

possesses an irreducible system. In particular, if G is finite then Fit(G) is 
a q-group for a certain prime q. We deal also with general systems. Corol- 

lary (4.2) gives information about  the s tructure of a finite group G which 

possesses a system. Theorem B says tha t  for any system A < H < G, 

NG(NG(A)) = NG(A). Theorem C and Corollary C'  generalize a result 

of Praeger [P, Theorem 2]. 
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1. I n t r o d u c t i o n  

In this paper we deal with groups G possessing a subgroup A, such that the index 

set D = {[A :A M Ag]lg E G} satisfies the following property: it consists of finite 

numbers only, and there exist two disjoint and non-empty sets of primes, a and 

r ,  such that  D -  {1} is a union of a non-empty set of a-numbers and a non-empty 

set of r-numbers. Isaacs and Praeger [IP] proved that for any subgroup A, there 

exist at most two disjoint sets of primes satisfying that condition. 

We have shown in [K] that in this situation, provided that A is stable in G 

(a property which holds when A or [G : A] is finite, and will be defined later 

in this paper), the group G has a nice structure. The main result in [K] ([K], 

Theorem A) is as follows: fix the notation for a and ~- such that m i n ( D - { 1 } )  is a 

a-number. Then the set g = {g E G I [A : A M A 9] is a a-number} is a subgroup 

of G if and only if A is stable in G (note 

In the current paper we obtain further 

such a subgroup A, provided that A is 

that 1 is considered as a a-number). 

information about groups G possessing 

stable in G. In that case we say that  

A < H < G is a d i s c o n n e c t e d  s y s t e m  (briefly: a sys t em)  of G. We say that  

a system A < H < G is i r r educ ib l e  if there does not exist a system of the form 

A N / N  < H / N  < G/N,  where 1 < N <1 G, A N  < H. 

It is easy to see that  for any system A < H < G, A is not a finite nilpotent 

group (see the remark in section 4). In section 3 we deal with irreducible systems. 

One of our results is that if G is a finite group possessing an irreducible system, 

then Fit(G) is a q-group for a certain prime q (in this paper the notion "q- 

group"s includes trivial groups; Fit(G) denotes the Fitting subgroup of G). In 

section 4 general systems are considered. We prove that if G is a finite group 

possessing a system A < H < G, then G has a proper normal subgroup N, such 

that  Fit(G/N) is a q-group for a certain prime q, and A N / N  is not nilpotent. 

Another result is that  if A < H < G is a system then NG(Nc(A)) = No(A).  

For a given pair (A, G) (where A is a subgroup of G), we continue to use the 

notation D = {[A : A~Ag]I g E G}. An index [A : AMA g] is called a s u b d e g r e e  

of (A, G), and so D is the s u b d e g r e e  se t  of (A, G). This concept was presented 

by Isaacs and Praeger (lIP]). In their paper the permutation group point of view 

is prominent: let G act transitively on a set X, and let A = G~ be the stabilizer 

of a point x E X. Then the subdegrees of (A, G) are exactly the cardinalities of 

the A-orbits on X. 

In the remaining part of this section, A is a non-normal subgroup of G (equiv- 

alently: D 7~ {1}), and we assume that all the subdegrees of (A, G) are finite. 

The c o m m o n  d iv i so r  g r a p h  F of (A, G) is the undirected graph with vertex 



Vol. 111, 1999  IRREDUCIBLE DISCONNECTED SYSTEMS IN GROUPS 205 

set D \{1},  in which two different vertices s,t �9 D - {1} are joined by an edge 

iff gcd(s, t) ~ 1 (gcd(s, t) denotes the greatest common divisor of s and t). We 

shall occasionally write F(A,G), to emphasize the pair to which F corresponds. 

Isaacs and Praeger proved (lIP], Theorem A) that F has at most two connected 

components. 

Remark: According to the definition in [IP], the common divisor graph includes 

also the trivial component of the vertex 1, and so, in terms of lIP], it has at most 

three components. I 

In this paper, whenever F is disconnected, the vertex sets of the two compo- 

nents are denoted by D1 and D2. Furthermore, we always fix the notation such 

that  min(D - {1}) �9 O1. 

We introduce now the important concepts of pa i r ing  and s tabi l i ty .  The 

pairing concept played a significant role in [IP]. The related concept of stability 

was defined in [K]. Subdegrees s and t (not necessarily different) are pa i r ed  if 

there existsg �9 G s u c h t h a t  s = [A : A ~ A g ] ,  t = [A: AMA~-I].  Note that 

[A : A N A g-l] = [A g : A g M A]. Note further that a subdegree can be paired with 

more then one subdegree, and that every subdegree is paired with something. 

We say that  A is s tab le  in G if 1 is paired only with itself and every two paired 

subdegrees different from i lie in the same connected component of F. Let Aa be 

the core of A in G. It is easy to see that if A/AG is finite then every subdegree 

is paired only with itself and so A is stable in G. In particular, if A or [G : A] is 

finite then A is stable in G. Furthermore, (2.7) and (4.1)(a) in [IP] imply that  if 

F is disconnected and D1 or D2 is a finite set, then A is stable in G. 

Isaacs and Praeger gave detailed information about the subdegree set D in the 

disconnected and stable setting. Parallel information about the structure of the 

group G was presented in [g]. The main result there was ([K], Theorem A): 

(1.1) THEOREM: Assume that F is disconnected and denote 

H = {g �9 a I [A: A MAg] �9 O1 U {1}}. 

Then H is a subgroup of G iff A is stable in G. In any case, NG(A) C H C G, 

where both inclusions are proper. 

Let M < G and let S C G be a non-empty union of right cosets Mu. Then 

we denote S / M  = {Mu I u E G, Mu C_ S}. Further we denote the cardinal- 

ity of S / M  by IS : M]. In particular [AgA : A] is the cardinality of the set 

{Au[ u �9 G, Au c_ AgA}. The equality [A : A M A  g] = [AgA : A] is easily 
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proved (see (K l, section 1). Other useful equalitie,~ arc a.~ follows: let hi and b' 

be as described above, and let g,h E G. Then [,5" ~ : M~] = IS:  hi]. [Sh : M] = 

[S: hi], [ 9 - ' S h :  M ~ = [S: M]. For a subgroup hi <_ G, we denote by M \ G  

the set of all the right cosets M9 (9 E G). The s t a n d a r d  ac t ion  of G on hi \ G 

is tile transitive action defined by (Mg)" - Mgn (for u E G). Tile ('or(' of hi in 

G is denoted by hie.  Tile normal closure of M in G is denoted by M c;. 

Theorem (1.I) motivates the following (lefinitions. Let G be a group with a 

subgroup A and a s ubs e t  H such that  A C H C G. We say that  A C H C G 

is a d i s c o n n e c t e d  s e m i - s y s t e m  (briefly: a s e m i - s y s t e m )  if A is not nor- 

real in G, all the subdegrees of (A,G) are finite, F(A.G ) is discommcted and 

H = {g E GI (A : A n A 9] E D~ LJ {1}}. Furthermore, if in addition A is stable 

in G then, by (1.1), H is a subgroup of G, and we say that A < H < G is a 

d i s c o n n e c t e d  s y s t e m  (briefly: a s y s t e m ) .  Notice that  by (1.1) a semi-system 

A C H C G is a system if and only i f H  is a subgroup of G. 

A system A < H < G is r e d u c i b l e  if there exists N such that 1 < N <1 G, 

A N  < H and A N / N  < H / N  < G / N  is a system. If such N fails to exist, we say 

that  the system is i r reduc ib le .  Notice that  if A < H < G is irreducible, then 

the core A(; must be trivial. 

Let a group G satisfy the maximal condition on normal subgroups (i.e., G 

does not have an infinite properly ascending chain of normal subgroups), and let 

A < H < G be a system. By the definitions, it follows e~.sily that there exists N 

such that  N <1 G, A N  < H and A N / N  < I t / N  < G I N  is an irreducible system. 

Thus the concept of irreducible systems is fundamental in the research of systems 

in general. 

In section 3 we prove the following criterion for irreducibility. 

(3.3) PROPOSITION: Let a group G possess a system A < H < G. Let L = A n, 

the normal closure of  A in H. Then A < H < G is irreducible iff A N  > L for 

each N such that 1 < N <1 G. 

For a natural number n we denote by 7r(n) the set of all the prime divisors of n. 

For a finite subgroup M <_ G we write 7r(M) = ~r([M[). For a finite G and a set of 

primes a, O,,(G) denotes the maximal normal a-subgroup of G. Let A < H < G 

be a system and let L = A H. Then [L : A] is finite and [L : A] ~ 1 by Theorem 

B of [K]. By using Proposition (3.3), we obtain in section 3 the following result 

about  groups possessing an irreducible system. 

THEOREM A: Let a group G possess an irreducible system A < H < G. Let 

L = A H. Suppose that N is a nontrivial finite normal subgroup of  G. Then 
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(i) zr([L : AI) C_ zr(N), and in particular 

(ii) i f  N is nilpotent then [L : A] is a power of a prime q, and N is a q-group. 

Theorem A immediately implies 

COROLLARY A': Let a finite group G possess an irreducible system A < H < G. 

Let L = A H. Then 

(i) For each prime q dividing [L: A], Oq,(G) = 1. 

(ii) / fFi t (G)  ~ 1, then [L : A] is a power of a prime q and Fit(G) is a q-group. 

COROLLARY All: Let a finite solvable group G possess an irreducible system 

A < H < G. L e t L  = A  H. Then [L :A]  i s a p o w e r o f a p r i m e q ,  [ H : N G ( A ) ]  

divides [L : A], and Fit(G) is a q-group. 

Proof: Since G is solvable, Fit(G) ~ 1. In view of Corollary A', it is left to show 

only that  [H : No(A)] divides i n :  A]. Since H -- L N c ( A )  by Lemma (2.3) in 

iN], we have [H:  No(A)] -- [L: L N NG(A)]. The result follows. II 

In section 4 general systems are considered. One of the results is 

THEOREM B: Let a group G possess a system A < H < G. Then NG(Nc(A) )  = 

No(A) .  

In section 5 we deal mainly with systems A < H < G satisfying [L : A] = q, 

a prime. This subfamily (alongside the subfamily of irreducible systems) seems 

as a good starting point for the research of systems in general. Our results, 

Theorem C and Corollary C t below, generalize the following result of Praeger 

([P], Theorem 2). 

THE {1,p,q}-THEOREM: Assume that D = {1,p,q}, where p and q are primes, 

p < q. Then p divides q - 1, and A is contained in a normal subgroup N of G, 

such that [N : A] = q and N / A N  is Frobenius of order pq. 

Notice that  under the conditions of the {1,p, q}-Theorem, the sets D1 = {p} 

and D2 = {q} are finite, and so A must be stable in G. Thus a system A < H < G 

occurs. Let L = A H, then [L : A] divides gcd(D2) by Theorem B(ii) in [K 1 

(where gcd(D2) is the greatest common divisor of all the numbers in D2). Hence 

[L : A] = q. In fact, we shall show (see the remark in section 5) that  the normal 

subgroup N mentioned in the { 1, p, q}-Theorem is equal to L. Hence the following 

results are indeed generalizations of the {1,p, q}-Theorem. 
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THEOREM C: Let a group G possess a system A < H < G. Let L = A H, and 

suppose that [L : A] --- q, a prime. Then one of the following cases holds: 

(a) L / A L  is Frobenius with a kernet of order q and a complement A / A L  of 

order, say, r. In this case D1 = {r}. 

(b) L/AL is isomorphic to a nonsolvable 2-transitive permutation group of 

degree q. In this case q - 1 �9 D1. 

Fbrthermore, in both cases ((a) and (b)) if A is finite then AL contains all the 

Sytow q-subgroups of A, which are nontrivial. 

Remark: Notice again that [L : A] divides gcd(D2) by Theorem B(ii) in [K]. 

Thus the assumption [L : A] = q of Theorem C holds in particular if gcd(D2) = q, 

a prime. 

The case when D2 = (q} is of particular interest. In this case A must be stable 

in G (since D2 is finite), and a system A < H < G occurs. We have: 

COROLLARY C': Assume that F is disconnected and D2 = {q}, where q is a 

prime. Let A < H < G be the corresponding system, and let L = A H. Then 

[L : A] = q, and so one of the cases (a) and (b) of Theorem C holds. Moreover, 

L = A G, the normal closure of A in G. 

ACKNOWLEDGEMENT: The author is grateful to the referee for his constructive 
remarks. 

2. N o t a t i o n  

Throughout this paper, whenever A < H < G is a system, we set the following 
notation: 

A is a stable subgroup of G; 

F (or F(A,G)) is the common divisor graph of (A,G); 

D is the subdegree set of (A, G); 

DI is the set of all the subdegrees in the connected component of F containing 
m i n ( D -  {1}); 

D2 is the set of all the subdegrees in the other component of F; 

H = {g �9 G[ [A: A r i A  g] �9 D1 U {1}}; 

L = A H, the normal closure of A in H. 



Vol. 111, 1999  IRREDUCIBLE DISCONNECTED SYSTEMS IN GROUPS 209 

3. I r r educ ib l e  s y s t e m s  

We begin with the following two lemmas, which absorb the main part of the proof 

of Theorem A. 

(3.1) LEMMA: Let A < G, N .~ G, g �9 G, and suppose that [A : A M A g] is 

finite. Then [AN : A N  M (AN) g] is finite, and it divides [A : A M Ag]. 

Proof'. We have [AN : A N  M (AN) g ] = [ANgAN : AN] = [ANgA : AN] = 

[(AN)gA: (AN) g] = [A: AM(AN)9]. Since [A: A N ( A N )  g] divides [A: AMAg], 

the proof is concluded. I 

(3.2) LEMMA: Let a group G possess a system A < H < G, and let N ,1 G, 

A N  ~ L. Then A N  < H and A N / N  < H / N  < G / N  is a system. 

Proof'. Since A N  ~ L, Theorem B(iii) of [K] implies A N  < H. For each 

element g �9 G and subgroup M ~ G denote g* = gN, an element of G/N,  and 

M* = M N / N ,  a subgroup of G/N. We must prove that  A* < H* < G* is 

asys tem.  For g �9 G we have [A* : A*M(A*) 9.] = [AN : ANM(AN)g] ,  and 

this last index divides [A : A M Ag] by (3.1). Now let u �9 H, v �9 G - H, then 

[A*: A* M (A*) ~'] divides [A: AMA u] and [A*: A*M(A*) v'] divides [A: AMAV]. 

Thus [A*: A* M (A*) ~'] and [A*: A* n (A*) v*] are coprime. 

Let us check which elements g C G satisfy [A* : A* M (A*) 9.] = 1. For such g it 

holds that  A N  <_ (AN) 9. Hence (AN) g-1 <_ AN, i.e. Ag-I N <_ AN, and so both 

A and A 9-1 are contained in AN. If g �9 G \ H then AA g-~ = LL g-~ D_ L by 

Theorem B(i)in [K], whence A N  >_ L, a contradiction. Thus [A*: A*M(A*) g*] = 

1 implies g �9 H and g* �9 H*. Now if each g* �9 H* satisfies [A* : A*M(A*) g*] = 1, 

then A* <1H*, whence AN<1 H. Thus A N  >_ A H -- L, a contradiction. It follows 

that {g* e G* I [A*: A* M (A*)g*] -- 1} c H* (a proper inclusion). 

From what we have shown till now we deduce that  F*, the common divisor 

graph of (A*,G*), is disconnected. By Theorem A of [IP] F* has exactly two 

components. The vertex sets of these components must be 

S = {[A*: A* M (A*)~*]] u* �9 H * } -  {1} and 

T = {[A*: A* M (A*)V']l v* �9 G* - H*}. 

For completing the proof that A* < H* < G* is a system, it suffices to show that  

the minimal non-unit subdegree of (A*, G*) is contained in S. We prove first that  

A* is stable in G*. Notice that 1 is paired only with itself, since F* is disconnected 

(see [IP], (2.7)). Furthermore, let g* E G*, then [A* : A* M (A*) g*] �9 T i f f  
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g* C G* - H* iff (g . ) - I  E G* - H* iff [A* : A* n (A*) (g')-l] C T. Thus A* is 

indeed stable in G*. 

Suppose now that the minimal non-unit subdegree is contained in T. Then the 

set {g* e G*] [A* : A* N (A*) g*] e T U {1}} is a proper subgroup of G*, by the 

"if" part of (1.1). Denote this subgroup by K*, then we have G* = H* U K*, 

which implies H* = G* and H = G, a contradiction. Thus the minimal non-unit 

subdegree is contained in S, and so the proof of the lemma is concluded. I 

Lemma (3.2) enables us to obtain the following simple criterion for 

irreducibility. 

(3.3) PROPOSITION: Let a group G possess a system A < H < G. 

Then A < H < G is irreducible iff AN > L for each N such that 1 < N <1 G. 

Proof: Suppose first that there exists N such that 1 < N <1 G and AN ~ L. 

Then A N / N  < H / N  < GIN is a system by (3.2), whence A < H < G is 

reducible. Next, suppose that A < H < G is reducible. Thus there exists N 

such that  1 < N <1 G, AN < H, and A N / N  < H / N  < GIN is a system. The 

proof will be concluded by showing that AN :~ L. Indeed, if AN >_ L then 

A N  = LN and so AN <1 H. Thus A N / N  <1 H/N.  This is a contradiction, since 

Na/N(AN/N  ) < H / N  by Theorem (1.1). I 

Proposition (3.3) plays a central role in 

Proof of Theorem A: (i) Since the system A < H < G is irreducible, (3.3) implies 

A N  > n. Thus [L : A] divides [AN : A], and so [L : A] divides [ g  : N n A ] .  

Hence 7r([L : A]) C_ ~r(N). 

(ii) This follows immediately by (i), since if N is nilpotent then each of its 

Sylow subgroups is normal in G. I 

In the remaining part of this section we consider some examples for groups 

possessing an irreducible system. 

(3.4) Example: It is easily verified that the "elementary abelian by Frobenius 

family" ([K], section 6) consists of finite solvable groups G possessing an ir- 

reducible system A < H < G, such that [L : A] = [H : A] = q, a prime. By 

Corollary A" Fit(G) must be a q-group. In fact, here Fit(G) is a Sylow q-subgroup 

of G. 

(3.5) Example: We present irreducible systems in which [L : A] = q, a prime, 

but Fit(G) = 1. Let q be a prime, q _> 5, let K = Sq (the symmetric group on 

{1, 2 , . . . ,  q}) and let M = {g E K I g fixes the point q}. Evidently [ g :  M] -- q, 
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and since K is 2-transitive, the subdegree set of ( M , K )  is {1,q - 1}. Choose 

a finite nontrivial q'-group R. We describe a subfamily of the "wreath product 

family" ([K], section 3). Consider the group G, which is the wreath product of 

K by R with respect to the action of R on itself by right multiplication (i.e., 

the standard action of R on the cosets of the trivial subgroup): G = K wr R = 

( K  x K • . . -  x K ) R .  Each of the IRI copies of K is related to one of the elements 

of R, and we agree that  the first copy is related to the element 1 (this last 

convention is just to secure consistency with the notation of section 3 in [K]). 

Let A = M x K • . .-  x K < G (IRI - 1 copies of K);  then the subdegree set of 

(A, G ) i s  {1, q - 1 }  U {q} = {1, q -  1,q}, and so F(A,C)is disconnected (for details 

see [K], section 3). We have U = K •  • K ([R] copies of K).  

Suppose that  there exists N such that  1 < N <1 G and A N  < H. Denote 

J = {g E K[ there exists in N an element of the form (g, . . . )} .  Since N <1 G 

we have J ~ K and so J = 1 or J = K or J = K0, the alternating group on 

{1, 2 , . . . ,  q}. If J = K or J = K0 then M J  = K and so A N  -- H,  a contradiction. 

Thus J -- 1. Since the action of R is transitive, the normality of N in G implies 

N = 1, a contradiction. Hence such N does not exist and the system A <: H < G 

is irreducible. Notice also that  L = H,  whence [L : A] = [K :M]  = q. However, 

here Fit(G) = 1. Indeed, By Corollary A'(ii), Fit(G) must be a q-group. Since we 

chose R to be a q'-group, it is easy to verify that  Oq(G) = 1. Thus Fit(G) = 1. 

(3.6) Example:  We present irreducible systems in which [L : A] is not a power of 

a prime. Let K be any finite non-abelian simple group and let Kp be a nontrivial 

Sylow p-subgroup of K.  Choose a finite nontrivial group R and define G -- K w r R  

in a w a y  similar to Example (3.5). Let A = K v x K x . . ,  x K  < G ( I R ] - I  

copies of K) ,  then F(A,C) is disconnected (for details see [K], section 3). We 

have H = g x . .-  x K ([R[ copies). Similarly to Example (3.5), we obtain (by 

the simplicity of K and the transitivity of R) that  the system A < H <: G is 

irreducible. Furthermore L = H,  and so [n : A] = [ g  : Kv]. Now since g is 

nonsolvable, it follows by a theorem of Burnside that  [K[ is divisible by at least 

three primes. Thus [L : A] is not a power of a prime. By Corollary A'(ii) we 

have Fit(G) = 1. 

4. General  sys tems  

We begin this section with the following 

Remark:  For any system A < H < G, A is not a finite nilpotent group. Indeed, 

suppose on the contrary that  A is finite and nilpotent. Let p and q be primes such 
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that  p divides a certain number in Dt and q divides a certain number in D2. Then 

for each g E G, pq does not divide [A : A NAg]. Let Ap and Aq be the respective 

Sylow subgroups of A. Then for each g E G either A g > Ap or A g > Aq holds. 

This implies either g E Na(Ap) or 9 E Na(Aq), and so G = Na(Ap) U Nc(Aq). 

Thus either G = Na(Ap) or G = NG(Aq), which contradicts our assumption that  

both  p and q divide some subdegrees. I 

We have already mentioned that  if G satisfies the maximal condition on normal 

subgroups and A < H < G is a system, then there exists N such that  A N / N  < 

H / N  < G / N  is an irreducible system. The following proposition describes how 

to find such N. 

(4.1) PROPOSITION: Let a group G possess a system A < H < G. Suppose that 

N is a subgroup of G, which is maximal such that (i) N <~ G and (ii) A N  ~ L 

(if G satisfies the maximal condition on normal subgroups then such N certainly 

exists). Then A N  < H and A N / N  < H / N  < G/ N  is an irreducible system. 

Proof'. Like in the proof of (3.2), we use the notation g* = gN, M* = M N / N .  

We must prove that  A* < H* < G* is an irreducible system. Notice first that  

A N  < H and A* < H* < G* is a system, by (3.2). Furthermore, L* = (A*) H• , 

which shows that  L* is in fact the "new L" of the system A* < H* < G*. In view 

of (3.3), it suffices to show that  A'K* >_ L* for each K* such that  1 < K* <1G*. 

Indeed, let K* satisfy t < K* <1 G* and let K be the inverse image of K*. We 

have N < K<3 G, whence by our assumption A K  > L. This implies A'K* > L*, 

as required. I 

As a direct result of Proposition (4.1) we obtain the following result on finite 

groups possessing a system. 

(4.2) COROLLARY: Let a finite group G possess a system A < H < G. Then G 

has a proper normal subgroup N, such that A N / N  is not nilpotent and Fit(G/N) 

is a (possibly trivial) q-group for a certain prime q dividing [L : A]. 

Proo~ Choose N as described in (4.1). By (4.1) A N / N  < H / N  < G / N  is an 

irreducible system. According  to the preceding remark, A N / N  is not nilpotent. 

By Corollary A'(ii), Fit(G/N) is a q-group for a certain prime q. Furthermore, 

suppose Fit(G/N) ~ 1. In the proof of (4.1) we have shown that  L N / N  is the 

"new L" of the system A N / N  < H / N  < G/N. It  follows by Corollary A'(ii) 

tha t  [LN/N:  AN/N] is a power of q. Hence q divides In :  A]. I 

Our next goal is to prove Theorem B. In the following we always assume that  

A is a non-normal subgroup of G such that  all the subdegrees of (A, G) are finite. 
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In Lemmas (4.3) and (4.4) below we do not assume that the group G possesses a 

system. We say that a pair (A, G) is of type (*) if [A a : A] is finite and coprime 

to every subdegree of (A, G). 

For example, let A < H < G be a system and consider the pair (A, H).  Since 

the subdegree set of (A, H)  is D1 and [L : A] divides gcd(D2) (see Theorem B(ii) 

in [K]), it holds that (A, H)  is of type (*). 

The following simple lemma is useful. 

(4.3) LEMMA: Assume that ( A, G) is of type (*). Then for each g E G - NG( A ), 

AAg is not a subgroup of G. 

Proof: Let g E G and suppose that AA 9 is a subgroup of G. Thus AA g < A a, 

and so [AAg : A] divides [An: A]. Now [AAg : A] = [Ag-IA : A] = [A: AAAg- '] ,  

a subdegree of (A,G). Since (A,G) is of type (*) we obtain [AA g : A] = 1. 

Consequently, A 9 < A. 

Now we have A _< A g-1 , so AA g-~ is a subgroup of G. Applying the argument 

of the previous paragraph to AA g-~, we get A g-1 _< A. Thus A g-~ = A, which 

implies g E No(A) .  | 

As a corollary of Lemma (4.3) we obtain: 

(4.4) LEMMA: Assume that (A, G) is of type (*). 

(i) Let M satisfy M >_ A and M A A C <_ NG(A). Then M < NG(A). 

(ii) The normal closure A c is not contained in No(A) .  

(iii) NG(NG(A)) : NG(A). 

Proof: (i) Let g E M, then A g < M N A G <_ NG(A), and so AA g is a subgroup 

of G. Thus g 6 No(A)  by (4.3). 
(ii) Suppose on the contrary that A c < NG(A). Thus G A A  a = A G <_ NG(A), 

whence by (i) we have G <_ NG(A). This contradicts our assumption that A is a 

non-normal subgroup of G. 

(iii) Let g E NG(NG(A)),  then A g < NG(A), and so AA g is a subgroup of G. 

Thus g 6 N o( A)  by (4.3). 1 

The following proposition about systems will be helpful in proving Theorem B. 

(4.5) PROPOSITION: Let a group G possess a system A < H < G. Then 

(i) A is not normal in L. 

(ii) I f  Ivl is a subgroup of G such that M >_ A and M A L <_ No(A) ,  then 

M < NG(A). 

Proof'. (i) Apply (4.4)(ii) to the pair (A, H).  
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(ii) Suppose that M _> A and M M L < NG(A). From M _> A it follows that 

either M __ L or M __ H (see Theorem B(iii) of [K]). If M _> L then L < Nc(A), 

contradicting (i). Hence M < H, and the proof is concluded by applying (4.4)(i) 

to the pair (A ,H) .  Notice that NG(A) = NH(A) by Theorem (1.1). I 

We are ready now for 

Proof of Theorem B: Notice again that No(A)  = NH(A) by Theorem (1.1). By 

applying (4.4)(iii) to the pair (A,H), we obtain NH(NG(A))  = Na(A) .  Thus 

N c ( N G ( A ) )  N n <_ Na(A) .  Now from (4.5)(ii) it follows that Nc(NG(A) )  = 

NG(A). . 

Let A < H < G be a system. We remark that A (unlike No(A) )  does not 

have to be a self-normalizer. In fact, let Go be a direct product of G and a 

nontrivial group M. Then it is easily verified that A < H M  < Go is a system 

and NGo(A) = N a ( A ) M  > A. 

We conclude this section by the following proposition on systems, which 

describes an interesting property of the intersections H M AA ~ (where g E G). 

(4.6) PROPOSITION: Let a group G possess a system A < H < G. Then 

(i) For every u E H - No(A) ,  AA  u is not a subgroup of H. 

(ii) For every v E G - H ,  H N A A  ~ is a subgroup of H. Moreover H N A A  ~ >_ L. 

Proof: (i) Just apply (4.3) to the pair (A,H). 

(ii) Consider the action of H on the set {AgA I AgA c G - H}, given by 

(AgA) ~ = AgAu = AguA (see Theorem B(iv) of [K]). For a fixed v e G \ H, 

what is the stabilizer K of AvA with respect to this action? Let u E H, then 

u E K i f f A v u A  = A v A i f f v u  C A v A i f f u  E AVA. T h u s K  = H V I A V A  = 

(H n AV)A = A ( H  n A ' )  = H N AA ~. Moreover, AA ~ = LL ~ (by Theorem B(i) 

of [K]), and so H n AA v >_ L. 

5. Gene ra l i za t i ons  of  t he  {1, p, q}-Theorem 

The following claims are needed for the proofs of Theorem C and Corollary C'. 

(5.1) LEMMA: Assume that (A,G) is of type (*) and denote K = A a. Suppose 

further that [K : A] = q, a prime. Then AK = AG. 

Proof: Suppose on the contrary that AK # Ac ,  then there exists g 6 G - N o ( A )  

such that  AK ~ A g. Thus 1 # [An : AK n A 9] = [AgAK : A 9] = [A(AK) 9-1 : A]. 

Now since K <l G and AK <1 K we have (AK) g-~ <~ K.  Consequently A(AK)  9-1 
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is a subgroup of K. Hence [A(AK) 9-'  : A] divides [K : A] = q, which implies 

[A(AK)  9-1 : A] = q and A ( A K )  ~-1 = K.  It follows that A A  g-~ = K,  which 

contradicts (4.3). I 

(5.2) LEMMA: Let  a group G possess a sys tem A < H < G. 

(i) Let  v E G -  H.  Then  L ~ < L iff A A  ~ = L i f f [ A v - I A  : A] = [L: A]. 

(ii) N a ( L )  = H U  {v C G -  H ] [AvA : A] = [ A v - I A  : A] = [L: A]}. Note  that  

the second component  in this union may  be empty. 

(iii) L <3 G iff D2 = {IL: A]}. 

Proof." (i) We have A A  v = LL"  (see Theorem B(i) in [K]), whence L v < L iff 

A A  ~ = L. Moreover, since A A  ~ = L L  ~, the set A A  ~ contains L. Thus A A  v = L 

if[ [AA~: A] = [L: A]. But [ A A ' :  A] = [ A v - I A :  A], which concludes the proof 

of (i). 

(ii) Let g E G; then g C N a ( L )  iff L 9 < L and L g-1 < L. Now fix v C G -  H. 

It follows by (i) that v e N a ( L )  iff [ A v A :  A] = [ g v - l A :  A] = [L:  A]. Since 

H < N a ( L ) ,  the result follows. 

(iii) This follows from (ii). Recall that [AgA:  A] = [g :  A N A g] for each g C G. 

I 

Theorem C and Corollary C ~ can be proved now. 

Proof  o f  Theorem C: By applying (5.1) to the pair (A, H) we obtain AL = AH,  

whence the quotient H / A L  is defined. For each element u E H and subgroup 

M < H denote u* = uAL,  an element of H / A L ,  and M* = M A L / A L ,  a subgroup 

of H / A L .  We have A* y~ I (by Proposition (4.5)(i)) and [L*: n*] = q. 

When considering the standard action of L on A \ L, we see that  L* is iso- 

morphic to a transitive nonregular permutation group of degree q. Suppose first 

that L* is solvable; then by (11.6) in [W] L* is Frobenius with a complement 

A*. Let r = IA*I. We have L* <3 H*, and all the Hall q'-subgroups of L* 

(i.e., the complements of L*) are conjugate in L*. Hence we may apply Frat- 

tini's argument to get H* = NH. (A*)L* .  Let s E D1; then there exists u E H 

such that s = [A : A VI AU], and there exist n* E N H . ( A * ) ,  l* E L* such that 

u* = n ' l* .  Thus s = [A: AM A u] = [A*: A* M ( A * y ]  = [A*: A* M (A*) n ' r ]  = 

[A* : A* M (A*)~*]. Since A* is a Frobenius complement in L*, we have either 

(A*) z" = A* or A*M(A*) t" = 1. But s # 1, whence A* V/ (A*) z* = 1 and so 

s = ]A* I = r. It follows that  D1 = {r}, and case (a) is obtained. 

Suppose now that  L* is nonsolvable; then by (11.7) in [W] L acts 2-transitively 

on A \ L, and so L* is isomorphic to a 2-transitive permutation group of degree 
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q. Thus  for each u E L - A we have a disjoint union L = A U AuA, whence 

q - 1 = [L:  A] - 1 = [AuA: A] e D1. This provides case (b). 

Finally notice tha t  in bo th  cases [A : AL] divides (q - 1)!, since [L : A] = q. 

Consequently,  if A is finite then AL contains alt the Sylow q subgroups  of A. 

Notice tha t  the Sylow q-subgroups of A are nontrivial,  since q divides gcd(D2) 

by Theorem B(ii) of [K]. I 

Proof of Corollary C:  By Theorem B(ii) of [K] [L : A] = q, whence Theo rem 

C applies. Moreover L <3 G by (5.2)(iii), and since L = A H < A a, we obta in  

L = A a. 

Remark: Let N be the normal  subgroup ment ioned in the {1, p, q}-Theorem.  

By Corol lary C'  we have L = A a <_ N and [L : A] = q = iN : A]. Thus  the 

equal i ty N = L is obtained.  

In Example  (3.4) we presented finite solvable groups G possessing a sys tem 

A < H < G such tha t  [L : A] = q, a prime. This  provides an example  for case 

(a) of T h e o r e m  C. Also the assumpt ion  D2 = {q} of Corollary C t holds there.  

Consider  now Example  (3.5). Here L = H = K x . . .  x K (]R I copies of 

K = Sq), [g : A] = q, a prime, and AL = 1 x K x . . .  x K (I R] - 1 copies 

of K) .  Thus  L/AL  is isomorphic to K = Sq, which is nonsolvable (recall t ha t  

q >_ 5), and so case (b) of Theorem C holds. Notice tha t  D = {1,q - 1,q}, so 

D1 = { q -  1} and D2 = {q}. 

An example  for case (b) of Theorem C in which D1 is not a singleton is given 

in [P] (see [P], Example  (2.2)(b)). In tha t  exampte  D,  = {3,4,6} and D2 = {7}. 

Notice fur ther  tha t  it follows tha t  the  solvability assumpt ion  in Theo rem D of 

[K] cannot  be omit ted .  

In the  following theorem we add to the set t ing of Theorem C the  assumpt ion  

t ha t  q is a self-paired subdegree of (A, G). Notice tha t  the examples  just  described 

satisfy this condition. 

THEOREM D: Let a group G possess a system A < H < G. Suppose that there 

exists v E G - H such that [A : A N A v] = [A : A N A v-~] = q, a prime. Then 

[L : A] = q, and so one of  the cases (a) and (b) of  Theorem C holds. In addition, 

(i) A N (AL) v <3 A, and A / A  n (AL) v is isomorphic to L /AL  

(ii) Denote R = A / A  N (AL) v, W = (A N A v ) / ( A  N (AL)')_ Then in case (a) 

W is a complement of  the Frobenius group R, and in case (b) the standard 

action of  R on W \ R is 2-transitive and faithful. 

Proof'. Notice first t ha t  gcd(D2) = q, whence the condit ion [L : A] = q of 

T h e o r e m  C is satisfied. Thus  one of the cases (a) and (b) of T h e o r e m  C holds. 
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Now we claim that  the indices [A : A N A  v-l] and [A : ALl are coprime. Indeed, 

[A: A n A v-~] = q, while [A: ALl divides ( q -  1)!, since [L: A] = q. It follows 

that  A = AL(A  N AV-1). Furthermore, since 

[AvA: A] = [d:  A N A  v] = [L: A], 

Lemma (5.2)(i) implies L = AA v-~. Consequently 

L = AA v-~ = AL(A N Av-~)A v-~ = ALA v-~. 

We have 
V--1 

L/AL  = A AL/AL,  

and A V - ' A L / A L  is isomorphic to Av-~/A "-~ n AL. This last quotient is clearly 

isomorphic to A / A  N (AL)", and so we have part (i). 

For proving (ii), let r denote the natural isomorphism from L/AL  to 

Av-~/A v-~ N AL (recall that  L/AL = AV-IAL/AL) ,  and let %6 denote the ob- 

vious isomorphism from Av-~/A v-~ n AL to A / A N  (AL)". We have (L/AL)  r162 =- 

A / A  N (AL) v = R. Furthermore, A = AL(A n AV-~), and so (A/AL)  r = 

((A N Av-1)AL/AL)  ~ = ( A n  A ~ - ' ) / ( A  '~-~ n AL). Thus 

(A/AL)  r = (A N A " ) / ( A  N (An) v) -- W. 

This implies part (ii), since one of the cases (a) and (b) of Theorem C holds (in 

the proof of Theorem C we have noted that in case (b) L acts 2-transitively on 

A " . L ) .  I 

Let A and K be groups such that  A acts on K via automorphisms, and set 

G -= AK,  the respective semidirect product. It is easily checked (see [K], the first 

paragraph of section 4) that  the subdegrees of (A, G) are exactly the cardinalities 

of the A-orbits on K.  More precisely, for each k E K we have [A : A N A  k] = IkAI, 

where k A denotes the A-orbit of k. Suppose that the action of A is nontrivial and 

that all the A-orbits are finite. In this case the common divisor graph F of (A, G) 

is defined: its vertices are the sizes of the nonsingleton A-orbits, and two different 

vertices are joined by an edge iff the respective orbit sizes are not coprime. It 

turns out that  in this case every subdegree is paired only with itself, so if F is 

disconnected then a system A < H < G occurs. Indeed, let g C G, g = ak, 

where a E A, k E K. Then [A : A N A  ~-~] = [A : A N A  k-~a-~] = [A : A N A  k-~] = 

I(k-1) A] ---- I { (k-1)al  a e A}] = I{(ka) -1 ] a �9 A}] = IkAI -= [A : A n A k] = 

[A: A N A  ~k] = [A: A NAg]. 

We shall call F the common divisor graph r e l a t ed  to  the  ac t ion  of  A on K.  

Our remark and Theorem D imply 
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THEOREM E: Let a group A act nontrivially on a group K via automorphisms, 

and suppose that ali the A-orbits are finite. Assume that the common divisor 

graph F reIated to this action is disconnected, and there exists a prime q such 

that q E D2. Then A has a normal subgroup N such that one of the following 

cases holds: 

(a) A / N  is Frobenius with a kernel of  order q and a complement of  order, say, 

r. In this case D1 = {r}. 

(b) A / N  is isomorphic to a nonsolvable 2-transitive permutation group of 

degree q. In this case q - 1 E D1. 

We do not know whether there exists a system A < H < G such that G is a 

simple group. However, the following proposition asserts that if such a system 

exists, then D2 must be a relatively "rich" set. 

(5.3) PROPOSITION: Assume that F is disconnected and D2 c {q, q2}, where 

q is a prime (since D2 is finite, A must  be stable in G under these conditions, 

whence we have a system A < H < G). Then G is not simple. 

Proof'. If D2 = {q} then L <1 G by Corollary C'. Suppose then that  q2 E D2. 

By Theorem B(ii) of [K], either [L: A] -- q2 or [L: A] = q holds. If [L: A] -- q2 

then (by the same theorem) D2 -- {q2}. Hence (5.2)(iii) implies L <1 G and G is 

not simple. Let [L : A] = q; then (see Theorem C in [K]) the subdegree set of 

(L, G) is {1, q}. Thus Theorem 2 in [BE] implies the existence of a subgroup N, 

N__ G, such that either (a) L <1 N and [N : L] = q, or (b) N <1 L and L / N  is 

isomorphic to a transitive permutation group of degree q. 

Suppose that (a) holds. Since [L: A] = q and q2 E D2, it follows by (5.2)(iii) 

that  L is not normal in G. Hence N is a proper normal subgroup of G. Suppose 

now that  (b) holds; then [L : N] divides q!, whence q2 does not divide [L : N]. 
But since q2 E D2, we have [A : A n A v] -- q2 for some v E G -  H. It follows 

that  N is nontrivial, which concludes the proof. | 
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